
DATA BASE SYSTEMS

LECTURE NOTES

 B.TECH

 (II YEAR – II SEM)

 (2018-19)

 Prepared by:

 Mr M.Venu, Assistant Professor

 Department of Electrical & Electronics Engineering

 MALLA REDDY COLLEGE

 OF ENGINEERING &TECHNOLOGY
 (Autonomous Institution – UGC, Govt. of India)
 Recognized under 2(f) and 12 (B) of UGC ACT 1956

 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)
 Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India

UNIT 1

Database: File Processing System Vs DBMS, History, Characteristic-Abstraction levels,

Architecture of a database, Functional components of a DBMS, DBMS Languages-Database

users and DBA.

File Processing System Vs DBMS

1. A database management system coordinates both the physical and the logical access

to the data, whereas a file-processing system coordinates only the physical access.

2. A database management system is designed to allow flexible access to data (i.e.

queries), whereas a file-processing system is designed to allow predetermined access

to data (i.e. compiled programs).

3. A database management system is designed to coordinate multiple users accessing the

same data at the same time. A file-processing system is usually designed to allow one

or more programs to access different data files at the same time. In a file-processing

system, a file can be accessed by two programs concurrently only if both programs

have read-only access to the file.

4. Redundancy is control in DBMS, but not in file system.

5. Unauthorized access is restricted in DBMS but not in the file system.

6. DBMS provide backup and recovery whereas data lost in file system can't be

recovered.

7. DBMS provide multiple user interfaces. Data is isolated in file system.

DBMS File Processing System

Minimal data redundancy problem in

DBMS
Data Redundancy problem exits

Data Inconsistency does not exist Data Inconsistency exist here

Accessing database is easier Accessing is comparatively difficult

The problem of data isolation is not

found in database

Data is scattered in various files and files

may be of different format, so data isolation

problem exists

Transactions like insert, delete, view,

updating, etc are possible in database
In file system, transactions are not possible

Concurrent access and recovery is

possible in database

Concurrent access and recovery is not

possible

Security of data Security of data is not good

A database manager (administrator)

stores the relationship in form of

structural tables

A file manager is used to store all

relationships in directories in file systems.

History of Database

1950s and early 1960s:

o Data processing using magnetic tapes for storage

o Tapes provided only sequential access

o Punched cards for input

Late 1960s and 1970s:

o Hard disks allowed direct access to data

o Hierarchical and network data models in widespread use

 IBM’s DL/I (Data Language One)

 CODAYSL’s DBTG (Data Base Task Group) model

 → the basis of current DBMSs

o Ted Codd defines the relational data model

 IBM Research develops System R prototype

 UC Berkeley develops Ingres prototype

o Entity-Relationship Model for database design

1980s:
o Research relational prototypes evolve into commercial systems

• DB2 from IBM is the first DBMS product based on the
relational model

• Oracle and Microsoft SQL Server are the most

prominent commercial DBMS products based on the

relational model

o SQL becomes industrial standard

o Parallel and distributed database systems

o Object-oriented database systems (OODBMS)

• Goal: store object-oriented programming objects in a database
without having to transform them into relational format

• In the end, OODBMS were not commercially successful due to high
cost of relational to object-oriented transformation and a sound

underlying theory, but they still exist

o Object-relational database systems allow both relational and object
views of data in the same database

Late 1990s:

o Large decision support and data-mining applications

o Large multi-terabyte data warehouses

o Emergence of Web commerce

Early 2000s:

o XML and XQuery standards

o Automated database administration

Later 2000s:

o Web databases (semi-structured data, XML, complex data types)

o Cloud computing

o Giant data storage systems (Google BigTable, Yahoo PNuts, Amazon
Web Services, …)

Characteristics of a Database

Stores any kind of Data

A database management system should be able to store any kind of data. It should not be

restricted to the employee name, salary and address. Any kind of data that exists in the real

world can be stored in DBMS because we need to work with all kinds of data that is present

around us.

Support ACID Properties

Any DBMS is able to support ACID (Accuracy, Completeness, Isolation, and Durability)

properties. It is made sure is every DBMS that the real purpose of data should not be lost

while performing transactions like delete, insert an update. Let us take an example; if an

employee name is updated then it should make sure that there is no duplicate data and no

mismatch of student information.

Represents complex relationship between data

Data stored in a database is connected with each other and a relationship is made in between

data. DBMS should be able to represent the complex relationship between data to make the

efficient and accurate use of data.

Backup and recovery

There are many chances of failure of whole database. At that time no one will be able to get

the database back and for sure company will be in a big loss. The only solution is to take

backup of database and whenever it is needed, it can be stored back. All the databases must

have this characteristic.

Structures and described data

A database should not contains only the data but also all the structures and definitions of the

data. This data represent itself that what actions should be taken on it. These descriptions

include the structure, types and format of data and relationship between them.

Data integrity

This is one of the most important characteristics of database management system. Integrity

ensures the quality and reliability of database system. It protects the unauthorized access of

database and makes it more secure. It brings only the consistence and accurate data into the

database.

Concurrent use of database

There are many chances that many users will be accessing the data at the same time. They

may require altering the database system concurrently. At that time, DBMS supports them to

concurrently use the database without any problem.

Abstraction levels

A database system is a collection of interrelated data and a set of programs that allow

users to access and modify these data. A major purpose of a database system is to provide

users with an abstract view of the data. That is, the system hides certain details of how the

data are stored and maintained.

Data Abstraction

For the system to be usable, it must retrieve data efficiently. The need for efficiency has led

designers to use complex data structures to represent data in the database. Since many

database-system users are not computer trained, developers hide the complexity from users

through several levels of abstraction, to simplify users’ interactions with the system:

Database Disk

Levels of Abstraction in a DBMS

• Physical level (or Internal View / Schema): The lowest level of abstraction describes
how the data are actually stored. The physical level describes complex low-level data
structures in detail.

• Logical level (or Conceptual View / Schema): The next-higher level of abstraction

describes what data are stored in the database, and what relationships exist among those

data. The logical level thus describes the entire database in terms of a small number of

relatively simple structures. Although implementation of the simple structures at the

logical level may involve complex physical-level structures, the user of the logical level

does not need to be aware of this complexity.

• This is referred to as physical data independence.
• View level (or External View / Schema): The highest level of abstraction describes

only part of the entire database. Even though the logical level uses simpler structures,

complexity remains because of the variety of information stored in a large database.

Many users of the database system do not need all this information; instead, they need

to access only a part of the database. The view level of abstraction exists to simplify

their interaction with the system. The system may provide many views for the same

database.

For example, we may describe a record as follows:

type instructor = record

ID : char (5);

name : char (20);

dept name : char (20);

salary : numeric (8,2);

end;

This code defines a new record type called instructor with four fields. Each

field has a name and a type associated with it. A university organization may

have several such record types, including

• department, with fields dept_name, building, and budget

• course, with fields course_id, title, dept_name, and credits

• student with fields ID, name, dept_name and tot_cred

At the physical level, an instructor, department, or student record can be described as a

block of consecutive storage locations.

At the logical level, each such record is described by a type definition, as in the

previous code segment, and the interrelationship of these record types is defined as

well.

Finally, at the view level, computer users see a set of application programs that hide details

of the data types. At the view level, several views of the database are defined, and a database

user sees some or all of these views.

Architecture of a Database

The architecture of a database system is greatly influenced by the underlying computer

system on which the database system runs. Database systems can be centralized, or client-

server, where one server machine executes work on behalf of multiple client machines.

Database systems can also be designed to exploit parallel computer architectures. Distributed

databases span multiple geographically separated machines.

A database system is partitioned into modules that deal with each of the responsibilities

of the overall system. The functional components of a database system can be broadly

divided into the storage manager and the query processor components. The storage

manager is important because databases typically require a large amount of storage

space. The query processor is important because it helps the database system simplify

and facilitate access to data.

Query Processor:

The query processor components include

· DDL interpreter, which interprets DDL statements and records the definitions in the

data dictionary.

· DML compiler, which translates DML statements in a query language into an

evaluation plan consisting of low-level instructions that the query evaluation engine

understands.

A query can usually be translated into any of a number of alternative evaluation plans

that all give the same result. The DML compiler also performs query optimization,

that is, it picks the lowest cost evaluation plan from among the alternatives.

Query evaluation engine, which executes low-level instructions generated by the DML

compiler.

Storage Manager:

A storage manager is a program module that provides the interface between the low level

data stored in the database and the application programs and queries submitted to the

system. The storage manager is responsible for the interaction with the file manager.

Transaction Manager:

A transaction is a collection of operations that performs a single logical function in a

database application. Each transaction is a unit of both atomicity and consistency.

Thus, we require that transactions do not violate any database-consistency constraints.

Functional components of a DBMS

1. File Manager manages the allocation space on disk storage and the data

structures used to represent info stored on other media. In most applications
(99.9%) the file is the central element. All applications are designed with
the specific goal: generation and use of information. A typical file system
layered architecture is the following.

User

Program

Sequential Indexed Random Lists

Logical I/O

Basic File System Structure

Device Drivers (Disk,tape,etc)

Controllers

Actual

Device

2. Buffer Manager among other tasks, it transfers blocks between disk (or

other devices) and Main Memory (MM). A DMA (Direct Memory
Access) is a form of I/O that controls the exchange of blocks between
MM and a device. When a processor receives a request for a transfer of a
block, it sends it to the DMA which transfers the block uninterrupted.

3. Query Parser translates statements in a query language, whether embedded

or not, into a lower level language. (See RL language example from

CPS510). This parser is also a strategy selector: i.e., finding the best and
most efficient way (faster?) of executing the query.

4. Authorization and Integrity Manager checks for the authority of the

users to access and modify info, as well as integrity constraints (keys,
etc).

5. Recovery Manager ensures that the database is and remains in a consistent

(sound) state after any kind of failure.

6. Concurrency Controller enforces Mutual Exclusion by ensuring that

concurrent interactions with the data base proceed without conflict
(deadlocks, etc).

Components of a Database

User: - Users are the one who really uses the database. Users can be administrator,

developer or the end users.

Data or Database: - As we discussed already, data is one of the important factor of

database. A very huge amount of data will be stored in the database and it forms the

main source for all other components to interact with each other. There are two types

of data. One is user data. It contains the data which is responsible for the database, i.e.;

based on the requirement, the data will be stored in the various tables of the database in

the form of rows and columns. Another data is Metadata. It is known as ‘data about

data’, i.e.; it stores the information like how many tables, their names, how many

columns and their names, primary keys, foreign keys etc. basically these metadata will

have information about each tables and their constraints in the database.

DBMS: - This is the software helps the user to interact with the database. It allows the

users to insert, delete, update or retrieve the data. All these operations are handled by

query languages like MySQL, Oracle etc.

Database Application: - It the application program which helps the users to interact

with the database by means of query languages. Database application will not have any

idea about the underlying DBMS.

DBMS Languages

To read data, update and store information in DBMS, some languages are used. Database

languages in DBMS are given as below.

 DDL – Data Definition Language

 DML – Data Manipulation Language

 DCL – Data Control Language

 TCL – Transaction Control Language

1. Data Definition Language (DDL)

DDL stands for data definition language and used to define database patterns or structures.

DDL is a syntax which is same as syntax of computer programming language for defining

patterns of database.

Few examples of it are:

 CREATE – used to create objects in database

 ALTER – alter the pattern of database

 DROP – helps in detecting objects

 TRUNCATE – erase all records from table

 COMMENT – adding of comments to data dictionary

 RENAME – useful in renaming an object

CREATE statement or command is used to create a new database. In structured query

language the create command creates an object in a relational database management system.

The commonly used create command is as follows

 CREATE TABLE [name of table] ([definitions of column]) [parameters of table]

DROP statement destroys or deletes database or table. In structured query language, it also

deletes an object from relational database management system. Typically used DROP

statement is

 DROP type of object name of object

ALTER statement enhance the object of database. In structured query language it modifies

the properties of database object. The ALTER statement is

 ALTER type of object name of object

RENAME statement is used to rename a database. It’s statement is as follows

 RENAME TABLE old name of table to new name of table.

2. Data manipulation language (DML)

It has statements which are used to manage the data within the pattern of objects. Some of the

samples of the statements are as follows:

 SELECT – useful in holding data from a database

 INSERT – helps in inserting data in to a table

 UPDATE – used in updating the data

 DELETE – do the function of deleting the records

 MERGE – this do the UPSERT operation i.e. insert or update operation

 CALL – this calls a structured query language or a java subprogram

 EXPLAIN PLAN – has the parameter of explaining data

 LOCK TABLE – this ha the function of controlling concurrency

These syntax elements are similar to the syntax elements used in computer programming

language. Performing the operation of reading of queries is also a component of data

manipulation language. Other forms of data manipulation languages (DML) are used by IMS,

CODASYL databases.

DML also include the structured query language (SQL) data modifying statements, they

modify the saved data but not the pattern of objects. The initial word of the DML statements

has functional capability.

The query statement SELECT is grouped with data statements of structured query language

(SQL). In practice there is no such difference and it is viewed to be a portion of DML.

Data manipulation languages contribute to have distinct relishes between database sellers.

They are divided as:

 Procedural programming

 Declarative programming

Initially data manipulation languages were only used in computer programs, but with the

coming of structured query languages it is also used in the database executors.

3. Data Control Language (DCL)

Data Control Language (DCL) is syntax similar to the programming language, which was

used to retrieve the stored or saved data. Examples of the commands in the data control

language (DCL) are:

 GRANT – this permits particular users to perform particular tasks

 REVOKE – it blocks the previously granted untrue permissions

The operations which has the authorization of REVOKE are CONNECT, INSERT, USAGE,

EXECUTE, DELETE, UPDATE and SELECT.

The execution of DCL is transactional; it also has the parameter of rolling back. But the

execution of data control language in oracle database does not have the feature of rolling

back.

4. Transaction Control Language (TCL)

Transaction Control Language (TCL) has commands which are used to manage the

transactions or the conduct of a database. They manage the changes made by data

manipulation language statements and also group up the statements in o logical management.

Some examples of it are:

 COMMIT – use to save work

 SAVE POINT – helps in identifying a point in the transaction, can be rolled back to

the identified point

 ROLL BACK – has the feature of restoring the database to the genuine point, since

from the last COMMIT

 SET TRANSACTION – have parameter of changing settings like isolation level and

roll back point

COMMIT command permanently save the transaction in to database.

 It’s syntax is: Commit;

ROLL BACK command uses the save point command to jump to save point in transaction.

 It’ s syntax is: rollback to name-save point;

SAVE POINT command is used to save a transaction temporarily.

 It’s syntax is: Save point name-save point;

Database Users

Database administrators – DBA is responsible for authorizing access to the database, for

coordinating and monitoring its use, and acquiring software and hardware resources as

needed.

Database designers – identify data to be stored in the database and choosing appropriate

structures to represent and store the data. Most of these functions are done before the

database is implemented and populated with the data. It is the responsibility of the database

designers to communicate with all prospective users to understand their requirements and

come up with a design that meets these requirements. Database designers interact with all

potential users and develop views of the database that meet the data and processing

requirements of these groups. The final database must support the requirements of all user

groups.

End Users

 Casual End Users – occasionally access, may need different information each time. Use

query language to specify requests.

 Naïve or parametric end users – main job is to query and update the database using

standard queries and updates. These canned transactions have been carefully

programmed and tested. Examples?

 Sophisticated end users – engineers, scientists, analysts who implement applications to

meet their requirements.

 Stand alone users – maintain personal databases using ready made packages.

DBA

A database administrator’s (DBA) primary job is to ensure that data is available, protected

from loss and corruption, and easily accessible as needed. Below are some of the chief

responsibilities that make up the day-to-day work of a DBA. DSP deliver an outsourced DBA

service in the UK, providing Oracle Support and SQL Server Support; whilst mindset and

toolset may be different, whether a database resides on-premise or in a Public / Private Cloud,

the role of the DBA is not that different.

1. Software installation and Maintenance

A DBA often collaborates on the initial installation and configuration of a new Oracle, SQL

Server etc database. The system administrator sets up hardware and deploys the operating

system for the database server, then the DBA installs the database software and configures it

for use. As updates and patches are required, the DBA handles this on-going maintenance.

And if a new server is needed, the DBA handles the transfer of data from the existing system

to the new platform.

https://www.dsp.co.uk/oracle-database-support/
https://www.dsp.co.uk/sql-server-support-2/

2. Data Extraction, Transformation, and Loading

Known as ETL, data extraction, transformation, and loading refers to efficiently importing

large volumes of data that have been extracted from multiple systems into a data warehouse

environment. This external data is cleaned up and transformed to fit the desired format so that

it can be imported into a central repository.

3. Specialized Data Handling

Today’s databases can be massive and may contain unstructured data types such as images,

documents, or sound and video files. Managing a very large database (VLDB) may require

higher-level skills and additional monitoring and tuning to maintain efficiency.

4. Database Backup and Recovery

DBAs create backup and recovery plans and procedures based on industry best practices, then

make sure that the necessary steps are followed. Backups cost time and money, so the DBA

may have to persuade management to take necessary precautions to preserve data.

System admins or other personnel may actually create the backups, but it is the DBA’s

responsibility to make sure that everything is done on schedule.

In the case of a server failure or other form of data loss, the DBA will use existing backups to

restore lost information to the system. Different types of failures may require different

recovery strategies, and the DBA must be prepared for any eventuality. With technology

change, it is becoming ever more typical for a DBA to backup databases to the cloud, Oracle

Cloud for Oracle Databases and MS Azure for SQL Server.

5. Security

A DBA needs to know potential weaknesses of the database software and the company’s

overall system and work to minimize risks. No system is one hundred per cent immune to

attacks, but implementing best practices can minimize risks.In the case of a security breach or

irregularity, the DBA can consult audit logs to see who has done what to the data. Audit trails

are also important when working with regulated data.

https://www.dsp.co.uk/oracle-cloud/
https://www.dsp.co.uk/oracle-cloud/
https://www.dsp.co.uk/sql-server-azure/

6. Authentication

Setting up employee access is an important aspect of database security. DBAs control who

has access and what type of access they are allowed. For instance, a user may have

permission to see only certain pieces of information, or they may be denied the ability to

make changes to the system.

7. Capacity Planning

The DBA needs to know how large the database currently is and how fast it is growing in

order to make predictions about future needs. Storage refers to how much room the database

takes up in server and backup space. Capacity refers to usage level. If the company is

growing quickly and adding many new users, the DBA will have to create the capacity to

handle the extra workload.

8. Performance Monitoring

Monitoring databases for performance issues is part of the on-going system maintenance a

DBA performs. If some part of the system is slowing down processing, the DBA may need to

make configuration changes to the software or add additional hardware capacity. Many types

of monitoring tools are available, and part of the DBA’s job is to understand what they need

to track to improve the system. 3rd party organizations can be ideal for outsourcing this

aspect, but make sure they offer modern DBA support.

9. Database Tuning

Performance monitoring shows where the database should be tweaked to operate as

efficiently as possible. The physical configuration, the way the database is indexed, and how

queries are handled can all have a dramatic effect on database performance. With effective

monitoring, it is possible to proactively tune a system based on application and usage instead

of waiting until a problem develops.

https://www.dsp.co.uk/modern-dba-support-provider/

10. Troubleshooting

DBAs are on call for troubleshooting in case of any problems. Whether they need to quickly

restore lost data or correct an issue to minimise damage, a DBA needs to quickly understand

and respond to problems when they occur.

UNIT- 2

Database Design and ER Diagram:

The database design process can be divided into six steps. The ER model is most relevant to the first

three steps:

(i) Requirements Analysis: The very first step in designing a database application is to
understand what data is to be stored in the database, what applications must be built on
top of it, and what operations are most frequent and subject to performance
requirements. In other words, we must find out what the users want from the database.

(ii) Conceptual Database Design: The information gathered in the requirements analysis
step is used to develop a high-level description of the data to be stored in the database,
along with the constraints that are known to hold over this data. This step is often
carried out using the ER model, or a similar high-level data model, and is discussed in the
rest of this chapter.

(iii) Logical Database Design: We must choose a DBMS to implement our database design,
and convert the conceptual database design into a database schema in the data model
of the chosen DBMS. We will only consider relational DBMS’s, and therefore, the task in
the logical design step is to convert an ER schema into a relational database schema.

Beyond the ER Model

ER modeling is sometimes regarded as a complete approach to designing a logical database schema.

This is incorrect because the ER diagram is just an approximate description of the data, constructed

through a very subjective evaluation of the information collected during requirements analysis. The

remaining three steps of database design are briefly described below:

(iv) Schema Refinement: The fourth step in database design is to analyze the collection of
relations in our relational database schema to identify potential problems, and to refine
it. In contrast to the requirements analysis and conceptual design steps, which are
essentially subjective, schema refinement can be guided by some elegant and powerful
theory.

(v) Physical Database Design: In this step we must consider typical expected workloads that
our database must support and further refine the database design to ensure that it
meets desired performance criteria. This step may simply involve building indexes on
some tables and clustering some tables, or it may involve a substantial redesign of parts
of the database schema obtained from the earlier design steps.

(vi) Security Design: In this step, we identify different user groups and different roles
played by various users (e.g., the development team for a product, the customer
support representatives, and the product manager). For each role and user group, we
must identify the parts of the database that they must be able to access and the parts of

the database that they should not be allowed to access, and take steps to ensure that
they can access only the necessary parts.

Entities, Attributes & Entity Sets:

An entity is an object that exists and is distinguishable from other objects.

– Example: student, department, employee and branch

Entities have attributes, which defines the property of an entity

– Example: student has names and roll no.
– There are different types of attributes which are categorized as follows:

i) Simple Attributes: having atomic or indivisible values. For e.g.

Dept–a string, PhoneNumber–an eight digit number.

ii) Composite Attributes: having several components in the value. For

e.g.: Qualification with components (DegreeName, Year,

UniversityName).

iii) Derived Attributes: Attribute value is dependent on some other

attribute. For e.g.:Age depends on DateOfBirth. So age is a derived

attribute.

iv) Single-valued Attributes: having only one value rather than a set of

values.

For e.g. PlaceOfBirth–single string value.

v) Multi-valued Attributes: having a set of values rather than a single

value.

For

e.g., CoursesEnrolledattribute for student, EmailAddress attribute for

student, PreviousDegree attribute for student.

Diagrammatic representation of an Entity and different types of attributes:

i) entity -rectangle attribute – ellipse connected to rectangle

ii) multi-valued attribute – double ellipse

iii) composite attribute – ellipse connected to ellipse

iv) derived attribute – dashed ellipse

Domains of Attributes

Each attribute takes values from a set called its domain.

For example,

studentAge – {17,18, …, 55}

HomeAddress–character strings of length 35.

Domain of composite attributes –cross product of domains of component attributes.

Domain of multi-valued attributes –set of subsets of values from the basic domain

An entity set is a set of entities of the same type that share the same properties.

– Example: set of all students, employees etc.

Relationships and Relationship sets

When two or more entities are associated with each other, we have an instance of a

Relationship.

E.g.: student Ramesh enrolls in Discrete Mathematics course

Relationship enrolls has Student and Course as the participating entity sets.

Degree of a relationship

Degree: The number of participating entities.

• Degree 2: A relationship having 2 entities attached, it is called binary

relationship.

• Degree 3: A relationship having 3 entities attached, it is called ternary

relationship

• Degree n: A relationship having 2 entities attached, it is called n-ary

relationship

• Binary relationships are very common and widely used.

Diagrammatic Notation for Relationships

Relationship is represented using a diamond shaped box. Rectangle of each

participating entity is connected by a line to this diamond. Name of the relationship is

written in the box

Binary Relationships and Cardinality Ratio

Cardinality Ratios

 One-to-One: An E1 entity may be associated with at most one E2 entity and similarly

an E2 entity may be associated with at most one E1 entity.

 One-to-Many & Many-to-One: An E1 entity may be associated with many E2 entities

whereas an E2 entity may be associated with at most one E1 entity.

 Many-to-Many: Many E1 entities may be associated with a single E2 entity and a

single E1 entity may be associated with many E2 entities

Participation Constraints

An entity set may participate in a relation either totallyor partially.

 Total participation: Every entity in the set is involved in some association (or tuple)

of the relationship.

 Partial participation: Not all entities in the set are involved in association (or tuples)

of the relationship.

Attributes for Relationship Types

Relationship types can also have attributes.

Grade gives the letter grade (S,A,B, etc.) earned by the student for a course. It is

neither an attribute of student nor that of course.

Design Issues of ER model:
The notions of an entity set and a relationship set are not precise, and it is possible to

define a set of entities and the relationships among them in a number of different ways.

Use of Entity Sets versus Attributes

Consider the entity set instructor with the additional attribute phone number It can

easily be argued that a phone is an entity in its own right with attributes phone number and

location; the location may be the office or home where the phone is located, with mobile

(cell) phones perhaps represented by the value “mobile.” If we take this point of view, we do

not add the attribute phone number to the instructor. Rather, we create:

• A phone entity set with attributes phone number and location.

• A relationship set inst phone, denoting the association between instructors and the

phones that they have.

Use of Entity Sets versus Relationship Sets

It is not always clear whether an object is best expressed by an entity set or a relationship

set.

we used the takes relationship set to model the situation where a student takes a (section of a)

course. An alternative is to imagine that there is a course-registration record for each course that

each student takes. Then, we have an entity set to represent the course-registration record. Let us

call that entity set registration. Each registration entity is related to exactly one student and to

exactly one section, so we have two relationship sets, one to relate courseregistration records to

students and one to relate course-registration records to sections. we show the entity sets section

and studentfrom with the takes relationship set replaced by one entity set and two relationship sets:

• registration, the entity set representing course-registration records.

• section reg, the relationship set relating registration and course.

• student reg, the relationship set relating registration and student.

Note that we use double lines to indicate total participation by registration entities.

One possible guideline in determining whether to use an entity set or a relationship set is

to designate a relationship set to describe an action that occurs between entities. This approach can

also be useful in deciding whether certain attributes may be more appropriately expressed as

relationships

Binary vs. n-ary relationship sets

Relationships in databases are often binary. Some relationships that appear to be non-

binary could actually be better represented by several binary relationships

It is always possible to replace a non-binary relationship set by a number of distinct binary

relationship sets. For example, consider a ternary relationship R associated with three entity sets A,

B and C. We can replace the relationship set R by an entity set E and create three relationship sets

as:

• RA, relating E and A

• RB, relating E and B

• RC, relating E and C

If the relationship set R had any attributes, these are assigned to entity set E. A special identifying

attribute is created for E

Placement of Relationship Attributes

The cardinality ratio of a relationship can affect the placement of relationship attributes:

• One-to-Many: Attributes of 1:M relationship set can be repositioned to only the entity set on the

many side of the relationship

• One-to-One: The relationship attribute can be associated with either one of the participating

entities

• Many-to-Many: Here, the relationship attributes can not be represented to the entity sets; rather

they will be represented by the entity set to be created for the relationship set.

constraints/key constraints:-

Entity integrity constraints / key constraints specifies the condition and restricts the data

that can be stored, only in one table

Definitions :

Key constraint: a key constraint is a statement that a certain minimal fields of a relation has a unique

identifier for all tuples. Actually key constraint is the general term, the term candidate key is used for

satisfying the constraints according to a key constraints.

Candidate key: A set of fields that uniquely identifies a tuple according to a key constraint is called a

candidate key for the relation

Super key: A super key is a super set of a candidate key. A super key is a set of fields that each

contains a candidate key

Specifying key constraint in sql:

In sql , we can declare that columns of a table from a candidate key using two statements.

 Unique key
 Primary key

Example:

Sql>create table student(sid char(10) primary key ,name varchar(20),

login char(10) UNIQUE, age int ,GPA float);

UNIQUE Key:- The purpose of a UNIQUE Key is to ensure that the information in the column is

UNIQUE,i.e

 The data held across the column must be UNIQUE.
 Any column can be left blank eith NULL value.

PRIMARY Key:- The purpose of a PRIMARY Key is to ensure that information in the column is UNIQUE

and must be compulsory entered.i.e

 The data held across the column must be UNIQUE.
 Even one column also can’t be left blank.

 Referentional Integrity constraints/foreign key constraints:-
Referentional Integrity constraints checks the conditions to satisfied in more than one relation(Two

or more tables)connected with some relationship.

Let us take an ex.

Supplier

 Supp.No

Name

If a relation supplies includes a foreign key(SUPP No) matching a Primary key(Supplier.Supp No) in

some other relation(Supplier), then every value of the foreign key in that relation(Supplies) must be

equal to the primary key of relation(Supplier).

Specifying foreign key constraints in sql:

In SQL, we can declare that columns of a table form a referential integrity constraint using Foreign

key.

Foreign keys represent relationship between tables. A foreign key is a column whose values are

derived from the primary key or UNIQUE Key of some other table.

The table in which the foreign key is defined is called a foreign table or detail table. The table that

defines the primary key and is referenced by the foreign key is called the primary or Master Table.

Let us create the new table “Enrolled” connected with the previous example Student table.

Sql>create table enrolled(sid varchar(10), cid varchar(10) primary key, grade varchar(10),

foreignkey (sid) references students);

Primarykey

ForeignKey

CID GRAD SID

0 101 C 831

0203 B 832

0112 A 650

Supplies

 Supp.No

0105 B 666

Enrolled

Students

Introduction to relational model:

The relational model was introduced by Dr.E.F.Codd in 1970.The relational model represents

data in the form of two dimensional tables. The organization of data into relational tables is known

as the logical view of the database.

Characteristics of Relational Model:

 A relational table eliminates all parent child relationships or instead represented all data in
the database as sample row/column tables of data values

 A relation as similar to a table with rows/columns of data values

 Each table as an independent entry and there as no physical relationships between tables

 Relational model of data management is based on set theory
 The user interface used with relational models as non procedural because only what needs

to be done as specified and not how it has to be done

Fundamental concepts of relations:

Relation:- A Relation can be thought of as a set of records in the form of two-dimensional table

containing rows and columns of data

A relation consists of two things: a relation schema and instance relation.

Relation schema: The relation schema contains the basic information of a table. This information

includes the name of the table, the

names of the columns and the data

types associated with each column

Sid Name Login Age gpa

000 Ghj Ghj@cs 18 3.6

666 Abc Abc@cs 19 3.3

688 Sad Sad@db 20 4.6

831 Bad Bad@se 21 4.8

650 Good Good@db 18 3.1

832 xyz xyz@cs 19 3.8

Cardinality

Degree

Relation instance: An instance of a relation is a set of types in which each tuple has the same no. of

fields as the relation schema

Relational database schema: A relational database schema is a collection of relation schemas,

describing one or more relations

Relation cardinality: The Relation cardinality is the no. of tuples in the relation

Relation degree: The Relation degree as the no.of columns in the relation

Tuples/records: The rows of the table as also known as records or tuples

Field/attributes: The columns of the table as also known as fields/attributes

Tabular Representation of Various ER Schemas

The relational model is today the primary data model for commercial data processing

applications. It attained its primary position because of its simplicity, which eases the job of

the programmer, compared to earlier data models such as the network model or the

hierarchical model.

Structure of Relational Databases:

A relational database consists of a collection of tables, each of which is assigned a unique

name. For example, consider the instructor table of Figure:1.5, which stores information about

instructors. The table has four column headers: ID, name, dept name, and salary. Each row of

this table records information about an instructor, consisting of the instructor’s ID, name, dept

name, and salary.

Database Schema

When we talk about a database, we must differentiate between the database schema, which

is the logical design of the database, and the database instance, which is a snapshot of the

data in the database at a given instant in time. The concept of a relation corresponds to the

programming- language notion of a variable, while the concept of a relation schema

corresponds to the programming-language notion of type definition.

Schema Diagrams

A database schema, along with primary key and foreign key dependencies, can be depicted by

schema diagrams. Figure 1.12 shows the schema diagram for our university organization.

Schema diagram for the university database.

Referential integrity constraints other than foreign key constraints are not shown explicitly

in schema diagrams.We will study a different diagrammatic representation called the entity-

relationship diagram.

ER Diagram Notations

An E-R diagram consists of the following major components:

• Rectangles divided into two parts represent entity sets. The first part, which in this

textbook is shaded blue, contains the name of the entity set. The second part contains the

names of all the attributes of the entity set.

• Diamonds represent relationship sets.

• Undivided rectangles represent the attributes of a relationship set. Attributes that are

part of the primary key are underlined.

• Lines link entity sets to relationship sets.

• Dashed lines link attributes of a relationship set to the relationship set.

• Double lines indicate total participation of an entity in a relationship set.

• Double diamonds represent identifying relationship sets linked to weak entity sets

Weak Entity Set-

Consider a section entity, which is uniquely identified by a course identifier, semester,

year, and section identifier. Clearly, section entities are related to course entities. Suppose

we create a relationship set sec course between entity sets section and course. Now,

observe that the information in sec course is redundant, since section already has an

attribute course id, which identifies the course with which the section is related. One

option to deal with this redundancy is to get rid of the relationship sec course; however, by

doing so the relationship between section and course becomes implicit in an attribute,

which is not desirable.

The notion of weak entity set formalizes the above intuition. An entity set that does

not have sufficient attributes to form a primary key is termed a weak entity set. An entity

set that has a primary key is termed a strong entity set.

For a weak entity set to be meaningful, it must be associated with another entity

set, called the identifying or owner entity set. Every weak entity must be associated with an

identifying entity; that is, the weak entity set is said to be existence dependent on the

identifying entity set. The identifying entity set is said to own the weak entity set that it

identifies. The relationship associating the weak entity set with the identifying entity set is

called the identifying relationship

had a primary key. However, conceptually, a section is still dependent on a course

for its existence, which is made explicit by making it a weak entity set.

In E-R diagrams, a weak entity set is depicted via a rectangle, like a strong entity

set, but there are two main differences:

• The discriminator of a weak entity is underlined with a dashed, rather than a

solid, line.

• The relationship set connecting the weak entity set to the identifying strong

entity set is depicted by a double diamond.

Views

Introduction to views

 The dynamic result of one or more relational operations operating on the base relations to

produce another relation is called view. A view is a virtual relation that does not necessarily

exist in the database. But can be produced upon request by a particular user at the time of

request.

 A view is object that gives the user a logical view of data from an underlying table or tables.

You can restrict what users can view by allowing them to see only a few columns from a

table.

Purpose of views

 The view mechanism is desirable for several reasons.

 It simplifies queries.

 It can be queried as a base table.

 It provides a powerful and flexible security mechanism by hiding parts of the database from

certain users.

 It permits users to access data in a way that is customized to their needs, so that the same

data can be seen by different users in different ways at the same time.

Updating views

 All updates to a base relation should be immediately reflected in all views that a single base

relation and containing either the primary key or a candidate key of the base relation.

 Updates are not allowed through views involving multiple base relations.

 Updates are not allowed through views involving aggregation or grouping operations.

Creating views

Syntax:

Examples: create view on book table which contains two fields title, and author name.

SQL> create view V_book as select title, author_name from book;

View created.

SQL>select * from V_book;

Output:

Title Author_name

Oracle Arora

DBMS Basu

DOS Sinha

ADBMS Basu

Unix Kapoor

CREATE VIEW viewname as

SELECT columnname,cloumnname

FROM tablenmae

WHERE columnname=expression list;

Selecting Data from a view

Example: Display all the title of book written by author ‘Basu’.

SQL> select title from V_Book Where author_name=’Basu’;

Output:

Title

DBMS

ADBMS

Updatable Views

Views can also be used for data manipulation i.e., the user can perform Insert, Update and the

Delete operations on the view. The views on which data manipulation can be done are called

Updatable views, views that do not allow data manipulation are called Read only Views. When you

give a view name in the update, insert or delete statement, the modification to the data will be

passed to the underlying table.

For the view to be updatable, it should meet following criteria:

 The view must be created on a single table.

 The primary key column of the table should be included in the view.

 Aggregate functions cannot be used in the select statement.

 The select statement used for creating a view should not included Distinct, Group by or

Having clause.

 The select statement used for creating a view should not include sub queries.

 It must not use constant, string or values expression like total/5.

Destroying/Altering Tables and Views

Altering Table

The definition of the table is changed using ALTER TABLE statement. The ALTER TABLE is used to add,

delete or modify columns in an existing table explained below:

1) ALTER TABLE…..ADD…..

This is used to add some extra columns into an existing table. The generalized format is

given below.

ALTER TABLE relation_name

ADD(new field1 datatype(size),

new field2 datatype(size)’………

Example:

ADD customer phone and fax number in the customer relation.

SQL> ALTER TABLE Customer

ADD(cust_ph_no varchar(15),cust_fax_no varchar(15));

Table created.

2) ALTER TABLE …..MODIFY

This form is used to change the width as well as data type of existing relations. the

generalized syntax of this from is shown below.

ALTER TABLE relation_name MODIFY(field1 new data type(size),

field2 new data type(size), fieldn new data type(size));

 Example:

Modify the data type of the publication year as numeric data type.

SQL> ALTER TABLE Book

MODIFY(pub_year number(4));

Table created.

Restrictions of the Alter Table

Using the alter table clause you perform the following tasks:

Change the name of the table.

Change the name of the column.

Drop a column.

Decrease the size of a column if table data exists.

3) ALETR TABLE……DELETE

To delete a column in a table , use the following syntax:

 Example: Drop customer fax number from the customer table.

SQL> ALTER TABLE customer

DROP COLUMN cust_fax_no;

DELETING TABLE

The tables are deleted permanently from the database using DROP TABLE command. We

remove all the data from the table using TRUNCATE TABLE command. It is explained below:

1) DROP TABLE

new fieldn datatype(size));

ALTER TABLE table_name

DROP COLUMN column_name

This command is used to delete a table. The generalized syntax if this form is given

below:

DROP TABLE relation_name

 Example: write the command for deleting special_customer relation.

SQL DROP TABLE Special_customer;

TABLR dropped.

2) Truncate a table

Truncating a table is removing all records from the table. The structure of the table stays

intact. The SQL language has a DELETE statement which can be used to remove one or

more (or all) rows from a table. Truncation releases storage space occupied by the table,

but deletion does not. The syntax:

 Example:

SQL> TRUNCATE TABLE student;

Deleting view

A view can be dropped by using the DROP VIEW command.

Syntax:

 Example:

DROP VIEW V_Book;

Triggers.

A trigger is a procedure that is automatically invoked by the DBMS in response to specified

changes to the database, and is typically specified by the DBA. A database that has a set of

associated triggers is called an active database. A trigger description contains three parts:

Event: A change to the database that activates the trigger.

Condition: A query or test that is run when the trigger is

activated.

Action: A procedure that is executed when the trigger is activated and its con-dition is

true.

A trigger action can examine the answers to the query in the condition part of the trigger, refer to

old and new values of tuples modified by the statement activating the trigger, execute new

queries, and make changes to the database.

TRUNCATE TABLE table_name;

DROP VIEW viewname;

Examples of Triggers in SQL

The examples shown in Figure 5.19, written using Oracle 7 Server syntax for

defining triggers, illustrate the basic concepts behind triggers. (The SQL:1999 syntax for

these triggers is similar; we will see an example using SQL:1999 syntax shortly.) The

trigger called init count initializes a counter variable before every execution of an INSERT

statement that adds tuples to the Students relation. The trigger called incr count

increments the counter for each inserted tuple that satisfies the condition age < 18.

CREATE TRIGGER init count BEFORE INSERT ON Students /* Event */

DECLARE

count INTEGER;

BEGIN /*action*/

Count:=0;

END

CREATE TRIGGER incr count AFTER INSERT ON Students /* Event
/ WHEN (new.age < 18) / Condition; ‘new’ is just-inserted
tuple */ FOR EACH ROW

BEGIN /* Action; a procedure in Oracle’s PL/SQL
syntax */

count := count + 1;

END

(identifying the modified table, Students, and the kind of modifying statement, an INSERT),

and the third field is the number of inserted Students tuples with age < 18. (The trigger in

Figure 5.19 only computes the count; an additional trigger is required to insert the

appropriate tuple into the statistics table.)

CREATE TRIGGER set count AFTER INSERT ON Students /* Event */

REFERENCING NEW TABLE AS InsertedTuples

FOR EACH STATEMENT

INSERT /* Action */

INTO StatisticsTable(ModifiedTable, ModificationType, Count)

SELECT
‘Students’, ‘Insert’,
COUNT * FROM
InsertedTuples I WHERE
I.age < 18

BEGIN
count := 0;

END

Unit 3

SQL: Overview, The Form of Basic SQL Query -UNION, INTERSECT, and

EXCEPT– join operations: equi join and non equi join-Nested queries - correlated

and uncorrelated- Aggregate Functions-Null values, GROUPBY- HAVING Clause.

THE FORM OF A BASIC SQL QUERY

This section presents the syntax of a simple SQL query and explains its meaning through

a conceptual evaluation strategy. A conceptual evaluation strategy is a way to evaluate

the query that is intended to be easy to understand, rather than efficient. A DBMS would

typically execute a query in a different and more efficient way.

Figure 5.1An Instance S 3 of Sailors Figure 5.2 An Instance R2 of Reserves

bid bname color
10
1

Interlak
e

blue

10
2

Interlak
e

red

10
3

Clipper gree
n

10
4

Marine red

(Q15) Find the names and ages of all sailors.

SELECT DISTINCT S.sname, S.age FROM Sailors S

The answer to this query with and without the keyword DISTINCT on instance S3 of

Sailors is shown in Figures 5.4 and 5.5. The only difference is that the tuple for Horatio

appears twice if DISTINCT is omitted; this is because there are two sailors called Horatio

and age 35.

sid bid day

22 101 10/10/98
22 102 10/10/98
22 103 10/8/98
22 104 10/7/98
31 102 11/10/98
31 103 11/6/98
31 104 11/12/98
64 101 9/5/98
64 102 9/8/98
74 103 9/8/98

Sid sname rating age

22 Dustin 7 45.0
29 Brutus 1 33.0
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35.0
64 Horatio 7 35.0
71 Zorba 10 16.0
74 Horatio 9 35.0
85 Art 3 25.5
95 Bob 3 63.5

(Q11) Find all sailors with a rating above 7.

SELECT S.sid, S.sname, S.rating, S.age FROM Sailors AS S WHERE S.rating > 7

(Q16) Find the sids of sailors who have reserved a red boat.

SELECT R.sid FROM Boats B, Reserves R WHERE B.bid = R.bid AND B.color = ‘red’

(Q2) Find the names of sailors who have reserved a red boat.

SELECT S.sname FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid AND

R.bid = B.bid AND B.color = ‘red’

(Q3) Find the colors of boats reserved by Lubber.

SELECT B.color FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid

AND R.bid = B.bid AND S.sname = ‘Lubber’

(Q4) Find the names of sailors who have reserved at least one boat.

SELECT S.sname FROM Sailors S, Reserves R WHERE S.sid = R.sid

Expressions and Strings in the SELECT Command

SQL supports a more general version of the select-list than just a list of columns. Each

item in a select-list can be of the form expression AS column name, where expression is

any arithmetic or string expression over column names (possibly prefixed by range

variables) and constants.

(Q5) Compute increments for the ratings of persons who have sailed two different

boats on the same day.

SELECT S.sname, S.rating+1 AS rating FROM Sailors S, Reserves R1,

Reserves R2 WHERE S.sid = R1.sid AND S.sid = R2.sid AND R1.day = R2.day

AND R1.bid <> R2.bid

Also, each item in a qualification can be as general as expression1 = expression2.

SELECT S1.sname AS name1, S2.sname AS name2 FROM Sailors S1,

Sailors S2 WHERE 2*S1.rating = S2.rating-1.

(Q6) Find the ages of sailors whose name begins and ends with B and has at least
three characters.

SELECT S.age FROM Sailors S WHERE S.sname LIKE ‘B %B’

The only such sailor is Bob, and his age is 63.5.

UNION, INTERSECT, AND EXCEPT

SQL provides three set-manipulation constructs that extend the basic query form pre-

sented earlier. Since the answer to a query is a multiset of rows, it is natural to consider

the use of operations such as union, intersection, and difference. SQL supports these

operations under the names UNION, INTERSECT, and EXCEPT.4 SQL also provides

other set operations: IN (to

check if an element is in a given set),op ANY,op ALL(tocom-pare a value with the

elements in a given set, using comparison operator op), and EXISTS (to check if a set is

empty). IN and EXISTS can be prefixed by NOT, with the obvious modification to their

meaning. We cover UNION, INTERSECT, and EXCEPT in this section. Consider the

following query:

(Q1) Find the names of sailors who have reserved both a red and a green boat.

SELECT S.sname FROM Sailors S, Reserves R1, Boats B1, Reserves R2,

Boats B2 WHERE S.sid = R1.sid AND R1.bid = B1.bid AND S.sid = R2.sid

AND R2.bid

= B2.bid AND B1.color=‘red’ AND B2.color = ‘green’

(Q2) Find the sids of all sailors who have reserved red boats but not green boats.

SELECT S.sid FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’
EXCEPT SELECT S2.sid FROM Sailors S2, Reserves R2, Boats B2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color =
‘green’

Joins

The join operation is one of the most useful operations in relational algebra and is the

most commonly used way to combine information from two or more relations. Although

a join can be defined as a cross-product followed by selections and projections, joins

arise much more frequently in practice than plain cross-products.joins have received a

lot of attention, and there are several variants of the join operation.

Condition Joins

The most general version of the join operation accepts a join condition c and a pair of

relation instances as arguments, and returns a relation instance. The join condition is

identical to a selection condition in form. The operation is defined as follows:

R ⊲⊳c S = σc(R × S)

Thus ⊲⊳ is defined to be a cross-product followed by a selection. Note that the

condition c can (and typically does) refer to attributes of both R and S.

(sid) snam

e

ratin

g

age (sid) bi

d

day

22 Dusti

n

7 45.

0

58 10

3

11/12/9

6

31 Lubbe

r

8 55.

5

58 10

3

11/12/9

6

Figure 4.12 S1 ⊲⊳S1.sid<R1.sid R1

Equijoin

A common special case of the join operation R ⊲⊳ S is when the join condition con-

sists solely of equalities (connected by ∧) of the form R.name1 = S.name2, that is,

equalities between two fields in R and S. In this case, obviously, there is some redun-

dancy in retaining both attributes in the result.

Natural Join

A further special case of the join operation R ⊲⊳ S is an equijoin in which equalities are

specified on all fields having the same name in R and S. In this case, we can simply

omit the join condition; the default is that the join condition is a collection of equalities on

all common fields.

Non Equi Join

The SQL NON EQUI JOIN uses comparison operator instead of the equal sign like >, <, >=,

<= along with conditions.

NESTED QUERIES

A nested query is a querythat has another query embedded within it; the embedded

query is called a subquery.

(Q1) Find the names of sailors who have reserved boat 103.

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid

FROM Reserves R

WHERE R.bid = 103)

(Q2) Find the names of sailors who have reserved a red boat.

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid

FROM Reserves R

WHERE R.bid IN (SELECT B.bid

FROM Boats B

WHERE B.color = ‘red’)

(Q3) Find the names of sailors who have not reserved a red boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid NOT IN (SELECT R.sid

FROM Reserves R

WHERE R.bid IN (SELECT B.bid

FROM Boats B

WHERE B.color = ‘red’)

SELECT *

FROM table_name1, table_name2

WHERE table_name1.column [> | < | >= | <=] table_name2.column;

Correlated Nested Queries

In the nested queries that we have seen thus far, the inner subquery has been completely

independent of the outer query:

(Q1) Find the names of sailors who have reserved boat number 103.

SELECT S.sname
FROM Sailors S

WHERE EXISTS (SELECT *

FROM Reserves R

WHERE R.bid = 103

AND R.sid = S.sid)

Set-Comparison Operators

(Q1) Find sailors whose rating is better than some sailor called Horatio.

SELECT S.sid
FROM Sailors S

WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2

WHERE S2.sname = ‘Horatio’)

(Q2) Find the sailors with the highest rating .

SELECT S.sid
FROM Sailors S
WHERE S.rating >= ALL (SELECT
S2.rating FROM Sailors S2)

More Examples of Nested Queries

(Q1) Find the names of sailors who have reserved both a red and a green boat.

SELECT S.sname

FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid

AND B2.color = ‘green’)

Noncorrelated

There are two kind of subquery in SQL one is called non-correlated and other is called

correlated subquery. In non correlated subquery, inner query doesn't depend on

outer query and can run as stand alone query.Subquery used along-with IN or NOT IN

sql clause is good examples of Noncorrelated subquery in SQL. Let's a noncorrelated

subquery example to understand it better

NonCorrelated subquery are used along-with IN and NOT IN clause. here is an example of

subquery with IN clause in SQL.

SQL query: Find all stocks from United States and India

AGGREGATE OPERATORS

We now consider a powerful class of constructs for computing aggregate values such as

MIN

and SUM.

1. COUNT ([DISTINCT] A): The number of (unique) values in the A column.

2. SUM ([DISTINCT] A): The sum of all (unique) values in the A column.

3. AVG ([DISTINCT] A): The average of all (unique) values in the A column.

4. MAX (A): The maximum value in the A column.

5. MIN (A): The minimum value in the A column.

(Q1) Find the average age of all sailors.

SELECT AVG (S.age)

FROM Sailors S

+-------------------------

| | InfoSys

| Goldman Sachs GROUP Inc |

| | Google Inc

mysql> SELECT COMPANY FROM Stock WHERE LISTED_ON_EXCHANGE IN (SELECT RIC FRO

M Market WHERE COUNTRY='United States' OR COUNTRY= 'INDIA');

+-------------------------+

| COMPANY |

+-------------------------+

(Q2) Find the average age of sailors with a rating of 10.

SELECT AVG (S.age)

FROM Sailors S

WHERE S.rating = 10

SELECT S.sname, MAX (S.age)

FROM Sailors S

Q3) Count the number of sailors.

SELECT COUNT (*)

FROM Sailors S

NULL VALUES

we have assumed that column values in a row are always known. In practice column

values can be unknown. For example, when a sailor, say Dan, joins a yacht club, he may

not yet have a rating assigned. Since the definition for the Sailors table has a rating

column, what row should we insert for Dan? What is needed here is a special value that

denotes unknown.

SQL provides a special column value called null to use in such situations. We use

null when the column value is either unknown or inapplicable. Using our Sailor table

definition, we might enter the row 〈 98, Dan, null, 39 〉 to represent Dan. The

presence of null values complicates many issues, and we consider the impact of null

values on SQL in this section.

Comparisons Using Null Values

Consider a comparison such as rating = 8. If this is applied to the row for Dan, is this

condition true or false? Since Dan’s rating is unknown, it is reasonable to say that this

comparison should evaluate to the value unknown.

SQL also provides a special comparison operator IS NULL to test whether a column value

is null; for example, we can say rating IS NULL, which would evaluate to true on the row

representing Dan. We can also say rating IS NOT NULL, which would evaluate to false on

the row for Dan.

Logical Connectives AND, OR, and NOT

Now, what about boolean expressions such as rating = 8 OR age < 40 and rating = 8

AND age < 40? Considering the row for Dan again, because age < 40, the first

expression evaluates to true regardless of the value of rating, but what about the second?

We can only say unknown.

The GROUP BY and HAVING Clauses

we want to apply aggregate operations to each of a number of groups of rows in a

relation, where the number of groups depends on the relation instance (i.e., is not

known in advance). (Q31) Find the age of the youngest sailor for each rating level.

SELECT MIN (S.age)

FROM Sailors S

WHERE S.rating = i

Q32) Find the age of the youngest sailor who is eligible to vote (i.e., is at least 18 years
old) for each rating level with at least two such sailors.

SELECT S.rating, MIN (S.age) AS minageGROUP BY S.rating

HAVING COUNT (*) > 1

More Examples of Aggregate Queries

Q3) For each red boat, find the number of reservations for this boat.

SELECT B.bid, COUNT (*) AS sailorcount FROM Boats B, Reserves R

WHERE R.bid = B.bid AND B.color = ‘red’ GROUP BY B.bid

SELECT B.bid, COUNT (*) AS sailorcount FROM Boats B, Reserves R

WHERE R.bid = B.bid GROUP BY B.bid HAVING B.color = ‘red’

(Q4) Find the average age of sailors for each rating level that has at least two sailors.

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S

GROUP BY S.rating

HAVING COUNT (*) > 1

(Q5) Find the average age of sailors who are of voting age (i.e., at least 18 years old) for

each rating level that has at least two sailors.

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
WHERE S. age >= 18
GROUP BY S.rating

HAVING 1 < (SELECT COUNT (*)

FROM Sailors S2 WHERE S.rating = S2.rating

(Q6) Find the average age of sailors who are of voting age (i.e., at least 18 years
old) for each rating level that has at least two such sailors.

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
WHERE S. age > 18

GROUP BY S.rating

HAVING 1 < (SELECT COUNT (*)

FROM Sailors S2

WHERE S.rating = S2.rating AND S2.age >= 18)

The above formulation of the query reflects the fact that it is a variant of Q35. The

answer to Q36 on instance S3 is shown in Figure 5.16. It differs from the answer to Q35

in that there is no tuple for rating 10, since there is only one tuple with rating 10 and age

≥ 18.

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
WHERE S. age > 18
GROUP BY S.rating
HAVING COUNT (*) > 1

This formulation of Q36 takes advantage of the fact that the WHERE clause is applied

before grouping is done; thus, only sailors with age > 18 are left when grouping is done.

It is instructive to consider yet another way of writing this query:

SELECT Temp.rating, Temp.avgage

FROM (SELECT S.rating, AVG (S.age) AS

avgage, COUNT (*) AS

ratingcount

FROM Sailors S WHERE S. age > 18 GROUP BY S.rating) AS Temp

WHERE Temp.ratingcount > 1

UNIT 4

DEPENDENCIES AND NORMAL FORMS

Normalization – Introduction, functional dependencies, First, Second, and third normal forms –

dependency preservation, Boyce/Codd normal form.

Higher Normal Forms - Introduction, Multi-valued dependencies and Fourth normal form, Join

dependencies and Fifth normal form

NORMALIZATION

Problems Caused by Redundancy

Storing the same information redundantly, that is, in more than one place within a database, can lead

to several problems:

 Redundant storage: Some information is stored repeatedly.

 Update anomalies: If one copy of such repeated data is updated, an inconsistency is created unless

all copies are similarly updated.

 Insertion anomalies: It may not be possible to store some information unless some other

information is stored as well.

 Deletion anomalies: It may not be possible to delete some information without losing some other

information as well.

FUNCTIONAL DEPENDENCIES

A functional dependency (FD) is a kind of IC that generalizes the concept of a key. Let R be a relation

schema and let X and Y be nonempty sets of attributes in R. We say that an instance r of R satisfies the

FD X ! Y
1

if the following holds for every pair of tuples t1 and t2 in r:

If t1:X = t2:X, then t1:Y = t2:Y .

A primary key constraint is a special case of an FD. The attributes in the key play the role of X, and

the set of all attributes in the relation plays the role of Y. Note, however, that the definition of an FD

does not require that the set X be minimal; the additional minimality condition must be met for X to be

a key. If X ! Y holds, where

Y is the set of all attributes, and there is some subset V of X such that V ! Y holds, then X is a super

key; if V is a strict subset of X, then X is not a key.

REASONING ABOUT FUNCTIONAL DEPENDENCIES

The discussion up to this point has highlighted the need for techniques that allow us to

carefully examine and further re ne relations obtained through ER design (or, for that matter,

through other approaches to conceptual design.

Given a set of FDs over a relation schema R, there are typically several additional

FDs that hold over R whenever all of the given FDs hold.

Closure of a Set of FDs

The set of all FDs implied by a given set F of FDs is called the closure of F and is

denoted as F +. An important question is how we can infer, or compute, the closure of a given

set F of FDs. The answer is simple and elegant. The following three rules, called Armstrong's

Axioms, can be applied repeatedly to infer all FDs implied by a set F of FDs. We use X, Y, and

Z to denote sets of attributes over a relation schema

R:

Reflexivity: If X Y, then X ! Y.

Augmentation: If X ! Y, then XZ ! YZ for any Z. Transitivity: If X

! Y and Y ! Z, then X ! Z.

Armstrong's Axioms are sound in that they generate only FDs in F + when applied to a set F of

FDs. They are complete in that repeated application of these rules will

generate all FDs in the closure F +. (We will not prove these claims.) It is convenient to use

some additional rules while reasoning about F+.

Union: If X ! Y and X ! Z, then X ! YZ. Decomposition: If X ! YZ,

then X ! Y and X ! Z.

These additional rules are not essential; their soundness can be proved using Arm-strong's

Axioms.

Normalization:

It is a process for evaluating and correcting table structures to minimize data

redundancies, there by reducing the likelihood of data anomalies.

Normalization works through a series of stages called normal forms. The first three stages

are described as first normal form (1NF), second normal form (2NF) and third normal form

(3NF).

From a structural point of view, 2NF is better than 1NF and 3NF is better than 2NF.

Denormalization:

Produces a lower normal form, which is a 3NF will be converted to a 2NF through

denormalization. A successful design must also consider end-user demand for fast

performance. Therefore, you will occasionally be expected to denormalize some portions of

database design in order to meet performance requirements.

The need for normalization

In following example:

We see in that example, the structure of data set does not conform to the requirements of

table nor does it handle data very well.

Consider the following deficiencies:

1. The project number (PROJ_NUM) is apparently intended to be primary key or at least a

part of a PK, but it contains nulls.

2. The table entries invite data inconsistencies. For example the JOB_CLASS value "Elect.

Engineer" might be entered as "Elect. Eng."

3. The table displays data redundancies. Those data redundancies yield the following

anomalies:

a. Update anomalies. Modifying the JOB_CLASS for employee number 105

requires (potentially) many alterations, one for each EMP_NUM=105.

b. Insertion anomalies. Just to complete a row definition, a new employee must be

assigned to a project. If the employee is not assigned, a phantom project must be

created to complete the employee data entry.

c. Deletion anomalies. Suppose that only one employee is associated with a given

project, if that employee leaves the company and the employee data are deleted ,

the project information will also be deleted .to prevent the loss of the project

information ,a fictitious employee must be created just to save the project

information.

The Normalization Process:

We will learn how to use normalization to produce a set of normalized tables to store the

data that will be used to generate the required information. The objective of normalization is

to ensure that each table conforms to the concept of well-formed relations, that is, tables that

have the following characteristics:

 Each table represents a single subject. For example, a course Table will contain only

data that directly pertains to courses. Similarly, a student table will contain only

student data.

 No data item will be unnecessarily stored in more than one table (in short, tables have

minimum controlled redundancy). The reason for this requirement is to ensure that the

data are update in only one place.

 All nonprime attributes in a table are dependent on the primary key. The reason for

this requirement is to ensure that the data are uniquely identifiable by a primary key

value.

 Each table is void of insertion, update or deletion anomalies. This is to ensure the

integrity and consistency of the data.

Conversion to First Normal Form (1NF)

Step 1: Eliminate the Repeating Groups

Start by presenting the data in tabular format, where each cell has a single value and there

are no repeating groups. A repeating group derives its name from the fact that a group of

multiple entries of the same type can exist for any single key attributes occurrence. To

eliminate the repeating groups, eliminate the nulls by making sure that each repeating group

attribute contains an appropriate data value.

Step 2: Identify the primary key:

Even causal observers will not that PROJ-NUM is not an adequate primary key because the

project number does not uniquely identify all of the remaining entity (row) attributes. To

maintain a proper primary key that will uniquely identify any attribute value, the new key

must be compost of a combination of a PROJ_NUM and EMP_NUM

Step 3: Identify All Dependencies:

The identification of the PK in Step 2 means that you have already identified the following

dependency:

 PROJ_NUM, EMP_NUM PROJ_NAME, EMP_NAME, JOB_CLASS,

CHG_HOUR, HOURS

 PROJ_NUM PROJ_NAME

 EMP_NUM EMP-NAME, JOB-CLASS, CHG-HOUR

 JOB_CLASS CHG_HOUR

Partial dependency a dependency based only a part of a composite primary key.

Transitive dependency is a dependency of one nonprime attribute on another nonprime

attribute.

The term first normal form (1NF) describes the tabular format in which:

 All of the key attributes are defined.

 There are no repeating groups in the table. in other words, each row/column intersection

contains one and only one value, not a set of values.

 All attributes are dependent on the primary key.

The problem with the 1NF table structure is that it contains partial dependencies. While

partial dependencies are sometimes used for performance reasons, they should be used with

caution.

Conversion to Second Normal Form (2NF)

Converting to 2NF is done only when the 1NF has a composite primary key. if the 1NF has a

single attribute primary key, then the table is automatically in 2NF. The 1NF-to-2NF

conversion is simple starting with:

Step 1: Write Each Key Component on a Separate Line

Write each key component on a separate line; then write the original (composite) key on the

last line.

 PROJ_NUM

 EMP_NUM

 PROJ_NUM EMP_NUM

Each component will become the key in a new table. In other words, the original table is now

divided in to three tables:

 (PROJECT, EMPLOYEE, and ASSIGNMENT).

Step 2: Assign Corresponding Dependent Attributes

Use dependency diagram to determine those attributes that are dependent on other

attributes.

 PROJECT (PROJ_NUM, PROJ_NAME)

 EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS, CHG_HOUR)

 ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

A table is in second normal form (2NF) when:

 it is in 1NF, And

 It includes no partial dependencies; that is, no attribute is dependent on only portion of

the primary key. Note that is still possible for a table in 2NF to exhibit transitive

dependency; that is, one or more attributes may be functionally dependent on non key

attributes.

Conversion to Third Normal (3NF):

Step 1: Identify the Dependent Attributes

For every transitive dependency, write its determinant as PK for a new table.

 JOB_CLASS

Step 2: Identify the Dependent Attributes

Identify the attributes that are dependent on each determinant identified in Step 1 and identify

the dependency.

 JOB_CLASS CHG_HOUR

Name the table to reflect its contents and function. In this case, JOB seems appropriate.

Step 3: Remove the Dependent Attributes from Transitive Dependencies

Eliminate all dependent attributes in the transitive relationship(s) from each of the tables that

have such a transitive relationship.

 EMP_NUM EMP_NAME, JOB_CLASS

Note that the JOB_CLASS remains in the EMPLOYEE table to save as FK.

After the 3NF conversion has been completed, your database contains four tables:

A table is in 3NF when:

 It is in 2NF

 It contains no transitive dependencies

Dependency-Preserving Decomposition into 3NF

Returning to the problem of obtaining a lossless-join, dependency- preserving decom-position

into 3NF relations, let R be a relation with a set F of FDs that is a minimal cover, and let R1;

R2; : : : ; Rn be a lossless-join decomposition of R. For 1 i n, suppose that each Ri is in 3NF and

let Fi denote the projection of F onto the attributes of Ri. Do the following:

Identify the set N of dependencies in F that are not preserved, that is, not included

in the closure of the union of Fis.

For each FD X ! A in N , create a relation schema XA and add it to the decom-position of

R.

Obviously, every dependency in F is preserved if we replace R by the Ris plus the schemas of

the form XA added in this step. The Ris are given to be in 3NF. We can show that each of the

schemas XA is in 3NF as follows: Since X ! A is in the minimal cover F, Y ! A does not hold

for any Y that is a strict subset of X. Therefore, X is a key for XA.

As an optimization, if the set N contains several FDs with the same left side, say, X !

A1; X ! A2; : : : ; X ! An, we can replace them with a single equivalent FD X ! A1 : : :

An. Therefore, we produce one relation schema XA1 : : : An, instead of several

schemas XA1; : : : ; XAn, which is generally preferable.

Comparing this decomposition with the one that we obtained earlier in this section, we find

that they are quite close, with the only difference being that one of them has CDJPQV instead

of CJP and CJDQV. In general, however, there could be significant differences. Database

designers typically use a conceptual design methodology (e.g., ER design) to arrive at an initial

database design. Given this, the approach of repeated decompositions to rectify instances of

redundancy is likely to be the most natural use of FDs and normalization techniques. However,

a designer can also consider the alternative designs suggested by the synthesis approach.

Boyce–Codd normal form (BCNF) is a normal form used in database normalization. It is a

slightly stronger version of the third normal form (3NF). BCNF was developed in 1975

by Raymond F. Boyce and Edgar F. Codd to address certain types of anomalies not dealt with

by 3NF as originally defined.[1]

If a relational schema is in BCNF then all redundancy based on functional dependency has

been removed, although other types of redundancy may still exist. A relational schema Ris in

Boyce–Codd normal form if and only if for every one of its dependencies X → Y, at least one

of the following conditions hold:[2]

 X → Y is a trivial functional dependency (Y ⊆ X)

 X is a superkey for schema R

Only in rare cases does a 3NF table not meet the requirements of BCNF. A 3NF table that

does not have multiple overlapping candidate keys is guaranteed to be in BCNF.[3]Depending

https://en.wikipedia.org/wiki/Database_normalization#Normal_forms
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Third_normal_form
https://en.wikipedia.org/wiki/Raymond_F._Boyce
https://en.wikipedia.org/wiki/Edgar_F._Codd
https://en.wikipedia.org/wiki/Boyce%E2%80%93Codd_normal_form#cite_note-Codd-1
https://en.wikipedia.org/wiki/Database_schema
https://en.wikipedia.org/wiki/Functional_dependency
https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/Functional_dependency
https://en.wikipedia.org/wiki/Boyce%E2%80%93Codd_normal_form#cite_note-2
https://en.wikipedia.org/wiki/Superkey
https://en.wikipedia.org/wiki/Candidate_key
https://en.wikipedia.org/wiki/Boyce%E2%80%93Codd_normal_form#cite_note-Vincent-3

on what its functional dependencies are, a 3NF table with two or more overlapping candidate

keys may or may not be in BCNF.

An example of a 3NF table that does not meet BCNF is:

Today's Court Bookings

Court

Start Time

End Time

Rate Type

1

09:30

10:30

SAVER

1

11:00

12:00

SAVER

1

14:00

15:30

STANDARD

2

10:00

11:30

PREMIUM-B

2

11:30

13:30

PREMIUM-B

2

15:00

16:30

PREMIUM-A

 Each row in the table represents a court booking at a tennis club. That club has one hard

court (Court 1) and one grass court (Court 2)

 A booking is defined by its Court and the period for which the Court is reserved

 Additionally, each booking has a Rate Type associated with it. There are four distinct rate

types:

 SAVER, for Court 1 bookings made by members

 STANDARD, for Court 1 bookings made by non-members

 PREMIUM-A, for Court 2 bookings made by members

 PREMIUM-B, for Court 2 bookings made by non-members

The table's superkeys are:

 S1 = {Court, Start Time}

 S2 = {Court, End Time}

 S3 = {Rate Type, Start Time}

 S4 = {Rate Type, End Time}

 S5 = {Court, Start Time, End Time}

https://en.wikipedia.org/wiki/Superkey

 S6 = {Rate Type, Start Time, End Time}

 S7 = {Court, Rate Type, Start Time}

 S8 = {Court, Rate Type, End Time}

 ST = {Court, Rate Type, Start Time, End Time}, the trivial superkey

Note that even though in the above table Start Time and End Time attributes have no

duplicate values for each of them, we still have to admit that in some other days two different

bookings on court 1 and court 2 could start at the same time or end at the same time. This is

the reason why {Start Time} and {End Time} cannot be considered as the table's superkeys.

However, only S1, S2, S3 and S4 are candidate keys (that is, minimal superkeys for that

relation) because e.g. S1 ⊂ S5, so S5 cannot be a candidate key.

Recall that 2NF prohibits partial functional dependencies of non-prime attributes (i.e., an

attribute that does not occur in ANY candidate key. See candidate keys), and

that 3NFprohibits transitive functional dependencies of non-prime attributes on candidate

keys.

In Today's Court Bookings table, there are no non-prime attributes: that is, all attributes

belong to some candidate key. Therefore the table adheres to both 2NF and 3NF.

The table does not adhere to BCNF. This is because of the dependency Rate Type → Court in

which the determining attribute Rate Type - on which Court depends - (1.) is neither a

candidate key nor a superset of a candidate key and (2.) Court Type is no subset of Rate

Type.

Dependency Rate Type → Court is respected since a Rate Type should only ever apply to a

single Court.

The design can be amended so that it meets BCNF:

Rate Types

Rate Type

Court

Member Flag

SAVER

1

Yes

STANDARD

1

No

https://en.wikipedia.org/wiki/Candidate_key
https://en.wikipedia.org/wiki/Second_normal_form
https://en.wikipedia.org/wiki/Candidate_key
https://en.wikipedia.org/wiki/Third_normal_form
https://en.wikipedia.org/wiki/Transitive_dependency

PREMIUM-A

2

Yes

PREMIUM-B

2

No

Today's Bookings

Member Flag

Court

Start Time

End Time

Yes

1

09:30

10:30

Yes

1

11:00

12:00

No

1

14:00

15:30

No

2

10:00

11:30

No

2

11:30

13:30

Yes

2

15:00

16:30

The candidate keys for the Rate Types table are {Rate Type} and {Court, Member Flag}; the

candidate keys for the Today's Bookings table are {Court, Start Time} and {Court, End

Time}. Both tables are in BCNF. When {Rate Type} is a key in the Rate Types table, having

one Rate Type associated with two different Courts is impossible, so by using {Rate Type} as

a key in the Rate Types table, the anomaly affecting the original table has been eliminated.

Multivalued Dependencies

Suppose that we have a relation with attributes course, teacher, and book, which we denote as

CTB. The meaning of a tuple is that teacher T can teach course C, and book

B is a recommended text for the course. There are no FDs; the key is CTB.

However, the recommended texts for a course are independent of the instructor.

The instance shown in Figure 15.13 illustrates this situation.

course teache

r

book

Physics1

01
Green

Mechani

c s

Physics1

01

Green

Optics

Physics1

01

Brown

Mechani

c s

Physics1

01

Brown

Optics

Math301

Green

Mechani

c s

Math301 Green Vectors

Math301 Green Geometr

y

BCNF Relation with Redundancy That Is Revealed by MVDs

There are three points to note here:

The relation schema CTB is in BCNF; thus we would not consider decomposing

it further if we looked only at the FDs that hold over CTB.

There is redundancy. The fact that Green can teach Physics101 is recorded once per

recommended text for the course. Similarly, the fact that Optics is a text for Physics101 is

recorded once per potential teacher.

The redundancy can be eliminated by decomposing CTB into CT and CB.

This table suggests another way to think about MVDs: If X !! Y

holds over R, then Y

Z (X=x(R)) = Y (X=x(R)) Z (X=x(R)) in every legal instance of R, for any value x that appears

in the X column of R. In other words, consider groups of tuples in R with the same X-value, for

each X-value. In each such group consider the projection onto the attributes YZ. This projection

must be equal to the cross-product of the projections onto Y and Z. That is, for a given X-value,

the Y-values and Z-values are independent. (From this de nition it is easy to see that X !! Y must

hold whenever X ! Y holds. If the FD X ! Y holds, there is exactly one Y-value for a given X-

value, and the conditions in the MVD de nition hold trivially. The converse does not hold, as

Figure 15.14 illustrates.)

Returning to our CTB example, the constraint that course texts are independent of instructors

can be expressed as C !! T. In terms of the de nition of MVDs, this constraint can be read as

follows:

\If (there is a tuple showing that) C is taught by teacher T,

and (there is a tuple showing that) C has book B as text,

then (there is a tuple showing that) C is taught by T and has text B.

Given a set of FDs and MVDs, in general we can infer that several additional FDs and MVDs

hold. A sound and complete set of inference rules consists of the three Armstrong Axioms plus

ve additional rules. Three of the additional rules involve only MVDs:

MVD Complementation: If X !! Y, then X !! R − XY . MVD Augmentation: If

X !! Y and W Z, then WX !! YZ. MVD Transitivity: If X !! Y and Y !! Z, then X

!! (Z − Y).

As an example of the use of these rules, since we have C !! T over CTB, MVD

complementation allows us to infer that C !! CT B − CT as well, that is, C !! B. The remaining

two rules relate FDs and MVDs:

Replication: If X ! Y, then X !! Y.

Coalescence: If X !! Y and there is a W such that W \ Y is empty, W ! Z, and Y

Z, then X ! Z.

Observe that replication states that every FD is also an MVD.

Fourth Normal Form

Fourth normal form is a direct generalization of BCNF. Let R be a relation schema, X and Y be

nonempty subsets of the attributes of R, and F be a set of dependencies that includes both FDs

and MVDs. R is said to be in fourth normal form (4NF) if for every MVD X !! Y that holds

over R, one of the following statements is true:

Y X or XY = R, or

X is a Superkey.

In reading this definition, it is important to understand that the de nition of a key has not

changed the key must uniquely determine all attributes through FDs alone. X !! Y is a trivial

MVD if Y X R or XY = R; such MVDs always hold.

The relation CTB is not in 4NF because C !! T is a nontrivial MVD and C is not a key. We can

eliminate the resulting redundancy by decomposing CTB into CT and CB; each of these

relations is then in 4NF.

To use MVD information fully, we must understand the theory of MVDs. However, the

following result due to Date and Fagin identifies conditions detected using only FD

information!|under which we can safely ignore MVD information. That is, using MVD

information in addition to the FD information will not reveal any redundancy. Therefore, if

these conditions hold, we do not even need to identify all MVDs.

If a relation schema is in BCNF, and at least one of its keys consists of a single

attribute, it is also in 4NF.

An important assumption is implicit in any application of the preceding result: The set

of FDs identified thus far is indeed the set of all FDs that hold over the relation. This

assumption is important because the result relies on the relation being in BCNF, which

in turn depends on the set of FDs that hold over the relation.

Figure shows three tuples from an instance of ABCD that satisfies the given MVD B

!! C. From the definition of an MVD, given tuples t1 and t2, it follows

B C A D

b c1 a1 d1 | tuple t1

b c2 a2 d2 | tuple t2

b c1 a2 d2 | tuple t3

Three Tuples from a Legal Instance of ABCD

that tuple t3 must also be included in the instance

Consider tuples t2 and t3. From the given FD A ! BCD and the fact

that these tuples have the same A-value, we can

deduce that c1 = c 2. Thus, we see that the FD B ! C must hold over ABCD whenever

the FD A ! BCD and the MVD B !! C hold. If B ! C holds, the relation ABCD is not in

BCNF (unless additional FDs hold that make B a key)!

Join Dependencies

A join dependency is a further generalization of MVDs. A join dependency (JD)

./ fR1; : : : ; R ng is said to hold over a relation R if R1; : : : ; Rn

is a lossless-join decomposition of R.

An MVD X !! Y over a relation R can be expressed as the join dependency ./ fXY, X(R−Y)g.

As an example, in the CTB relation, the MVD C !! T can be expressed as the join dependency ./

fCT, CBg.

Unlike FDs and MVDs, there is no set of sound and complete inference rules for JDs.

Fifth Normal Form

A relation schema R is said to be in fth normal form (5NF) if for every JD ./ fR1; :

: : ; Rng that holds over

R, one of the following statements is true:

Ri = R for some i, or

The JD is implied by the set of those FDs over R in which the left side is a key

for R.

The second condition deserves some explanation, since we have not presented inference rules

for FDs and JDs taken together. Intuitively, we must be able to show

that the decomposition of R into fR1; : : : ; Rng is lossless-join whenever the key

dependencies (FDs in which the left side is a key for R) hold. ./ fR1; : : : ; Rng is a

trivial JD if Ri = R for some i; such a JD always holds.

The following result, also due to Date and Fagin, identifies conditions again, detected

using only FD information under which we can safely ignore JD information.

If a relation schema is in 3NF and each of its keys consists of a single attribute,

it is also in 5NF.

The conditions identified in this result are sufficient for a relation to be in 5NF, but not

necessary. The result can be very useful in practice because it allows us to conclude

that a relation is in 5NF without ever identifying the MVDs and JDs that may hold over

the relation.

UNIT – 5

Transaction concept, transaction state, Properties of a Transaction, concurrent executions,

serializability, recoverability, implementation of isolation, Testing for serializability.

Transaction Concept:
Collection of operations that form a single logical unit of work are called transactions

Properties of transaction:

To ensure integrity of data, the database system should maintain following

properties:

Atomicity: Either all operations of the transaction are reflected properly in the database or

none are.

Consistency: Execution of a transaction in isolation preserves the consistency of the

database.

Isolation: Even though multiple transactions execute concurrently, each transaction is

unaware of other transactions executing concurrently in the system.

Durability: After a transaction completes successfully, the changes it has made to the

database persist, even if there are system failures.

Transactions access data using two operations:

i) Read(x), which transfers the data item x from the database to a local buffer

belonging to the transaction that executed the read operation

ii) Write(x), which transfers the data item x from the local buffer to the transaction

that executed write back to the data base.

Ex:
Let Ti be a transaction that transfers Rs 50 from account A to account B,

This transaction can be defined as:

Ti : read (A)

A: =A-50

Write (A)

Read (B)

B: =B+50

Write (B)

ACID Requirements:

i) Consistency: This Consistency requirement is that the sum of A and B unchanged

by the execution of the transaction.

ii) Atomicity: Suppose, before execution of the transaction Ti the values of accounts
A and B are Rs 1000, and Rs 2000, respectively. Now suppose during execution

of transaction of transaction Ti, a Failure occurs. Consider the failure occurs after
write (A) operation but before write (B).In this case, the values of accounts A and

B reflected in the database are Rs 950 and Rs 2000. Thus, the sum A+B is no

longer preserved. To avoid this, the atomicity should be ensured.

To ensure atomicity database system keeps track of the old values of any data on

which a transaction performs a write. If transaction does not complete its execution, the

database system restores the old values. Atomicity is handles by transaction management

component

iii) Durability: The durability property guarantees that, once a transaction completes

successfully, all the updates that it carried out on the database persist, even if there

is a system failure after the transaction completes execution.

Ensuring durability is the responsibility of a component called the recovery management.

iv) Isolation: If several transactions are executed concurrently, their operation may

interleave in some undesirable way, resulting in an inconsistent state.

For example, the database is temporarily inconsistent while the transaction to transfer

funds from A to B is executing. If a second concurrently running transaction reads A and B at

this intermediate point and computes A+B, it will observe an inconsistent value. Further more

if second transaction then performs updates on A and B, the database may be left in

inconsistent state even after both transactions have completed.

To avoid the problem of concurrent execution, transactions should be executed in

isolation. The isolation property of a transaction ensures that the concurrent execution of

transactions results in a system state that could have been obtained if transactions are

executed serially i.e. one after other.

Ensuring the isolation property is the responsibility of concurrent control component.

Transaction state:
In the absence of failures, all transactions completes execution successfully. However,

it is also possible that transaction does not complete its execution successfully. Such a

transaction is termed as aborted. It is necessary to undone the changes done by the aborted

transaction to ensure the atomicity property. Once the changes done by the aborted

transaction have been undone, we say that the transaction has been rolled back. A transaction

that completes its execution successfully is said to be committed.

A transaction must be in one of the following states:

 Active, the initial state; the transaction stays in this state while it is executing.

 Partially committed, after the final statement has been executed.

 Failed, after the discovery that normal execution can no longer proceed.

 Aborted, after the transaction has been rolled back and the database has been restored

to its state prior to the start of the transaction.

 Committed, after successful completion.

Fig shows the state diagram of a transaction. A transaction starts in the active state.

When it finishes its final statement, it enters the partially committed state. When the last

statement of the actual output is written out in disk from main memory, the transaction

enters the committed state.

A transaction enters the failed state after the system determines that the transaction

can no longer proceed with its normal execution. Such a transaction must be rolled back.

Then, it enters the aborted state. At this point, the system has two options:

i) It can restart the transaction, if the transaction was aborted as a result of some

hardware or software error that was created through the internal logic of the

transaction.

ii) It can kill the program, if the transaction was aborted because of internal logical

error that can be corrected only by rewriting the application program.

Concurrent executions:
Transaction processing systems usually allow multiple transactions to run concurrently.

i) Improved throughput and resource utilization:

“Throughput is number of transactions executed in a given amount of time.”
A transaction consists of many steps. Some involve I/O activity; others involve CPU

activity. The CPU and the disks in a computer system can operate in parallel. The

parallelism of the CPU and the I/O system can therefore be exploited to run multiple

transactions in parallel. If one transaction is reading or writing data on disk, another

can be running in the CPU. All of this increases throughput of the system

correspondingly, the processor and disk utilization also increases. Thus the processor

and disk spend less time idle.

ii) Reduced waiting time :

If transaction runs serially, a short transaction may have to wait for a preceding long

transaction to complete, which can lead to un-predictable delays in running a

transaction. If the transactions are operating on different parts of the database, it is

better to run them concurrently showing the CPU cycles and disk accesses among

them. Concurrent execution reduces the unpredictable delays in running transactions.

It also reduces the average response time.

Example: let T1 and T2 are two transactions. Transaction T1 transfers Rs 50 from

account A to account B. it is defined as:

T1:

read(A);

A:=A-50;

Write(A);

Read(B);

B:=B+50;

Write(B);

Transaction T2 transfer 10 percent of the balance from account A to account B. It is defined

as:

T2:

read(A);

Temp:=A*0.1;

A:=A-temp;

Write(A);

Read(B);

B:=B+temp;

Write(B);

Suppose the current values of accounts A and B are Rs1000 and Rs2000, respectively.

Suppose the two transactions are executed in the order T1 followed by T2. This execution

sequence appears in fig.

The final values of accounts A and B, after the execution of schedule 1 in fig are $855 and

$2145, respectively. Thus the sum A+B is preserved.

If the two transaction are executed in the order T2 followed by T1, then also the

corresponding execution sequence is that of fig. After execution of schedule 2, the sum A+B

is preserved and the final values of accounts A and B are Rs 850 and Rs 2150 respectively.

T1 T2

read(A)

A:=A-50

Write(A)

Read(B)

B:=B+50

Write(B)

read(A)

Temp:=A*0.1

A:=A-temp

Write(A)

Read(B)

B:=B+temp

Write(B)

Fig: Schedule 1-a serial schedule in which T1 is followed by T2

The execution sequences which represents the chronological order in which
instructions are executed in the systems, are called schedules.

After execution of this schedule, we arrive at the same state as the one in

which the transactions are executed serially in the order T1 followed by T2. The sum

A+B is preserved.

T1 T2

read(A)
A:=A-50

Write(A)

read(B)

B:=B+50

Write(B)

read(A)

Temp:=A*0.1

A:=A-temp

Write(A)

read(B)

B:=B+temp

Write(B)

Not all concurrent executions result in a correct state. Consider a schedule shown in fig. After

the execution of this schedule, we arrive at a state where the final values of accounts A and B

are Rs 950 and Rs 2100, respectively. This final state is an inconsistent state.

Serializability
Need of serializability

Concurrent execution have following problems:

1) Lost update: The update of one transaction is overwritten by another transaction.

Example: Suppose T1 credits $ 100 to account A and T2 debits $ 50 from account A. The

initial of A= 500. If credit and debit are applied correctly, then the final correct value of

the account should be 550, if we run T1 and T2 concurrently as follows:

Time
T1(credit) T2(Debit)

read(A) {A=500}

A:A+100 {A=600}
Write(A) {A=600}

read(A) {A=500}

A:A-50 {A=450}
Write (A) {A=450}

Final value of A=450. The credit of T1 is missing (lost update) from the account.

2) Dirty read: Reading of a non-existent value of A by T2. If T1 update A which is then

read by T2, then if T1 aborts T2 will have read a value of A which never existed.

Time

T1 modified A=600. T2 read A=600. But T1 failed and its effect is removed from the

database, so A is restored to its old value, i.e. A=500.A=600 is a nonexistent value but

read(reading dirty data) by T2.

3) Unrepeatable read: if T2 reads A, which is then altered by T1 and T1 commits.
When T2 rereads A it will find different values of A in its second read

Time
T1(credit) T2(Debit)

read(A) {A=500}

A:A+100 {A=600}

Write(A) {A=600}

read(A) {A=500}

A:A-50 {A=450}

Write (A) {A=600}

In this execution T1 reads A=500, T2 reads A=500. T1 modifies A to 600. When T2 rereads A

T1 (Credit) T2 (Debit)

read(A) {A=500}
A:A+100 {A=600}

Write(A) {A=600}

T1 failed to complete

read(A) {A=500}

A:A+100 {A=600}

Write (A) {A=600}

it gets A=600. This should not be the case. T2 in the same execution should get only one
value of A (500 or 600 and not both).

In serial execution these problem (dirty, read, unrepeatable read , and lost update) would not

arise since serial execution does not share data items. This means we can use the results of

serial execution as a measure of correctness and concurrent execution for improving resource

utilization. We need serialization of concurrent transaction.

Serialization of concurrent transactions: process of managing the execution of a set of

transactions in such a way that their concurrent execution produces the same end result as if

they were run serially.

Definition: serializable Schedule

Given an interleaved execution of a set of n transaction; the following conditions hold for

each transaction in the set.

 All transactions are correct in the sense that if any one of the transactions is

executed by itself on a consistent database, the resulting database will be

consistent.

 The transactions are logically correct and that no two transactions are
interdependent.

The given interleaved execution of these transactions is said to be serializable if it produces

the same result as some serial execution of the transactions.

Conflict and view serializable schcedule:

There are two types of serializability:

 Conflict serializability

 View serializability

Conflict serializable schedule:

Let us consider a schedule S in which there are two consecutive instructions Ii and Ij

of transactions Ti and Tj respectively. If Ii and Ij refers to different data items, then we can

swap Ii and Ij without affecting the results of any instruction in the schedule. however, if Ii

and Ij refer to the same data item Q,then the order of the two steps may matter.there are four

cases to consider:

1. Ii=read(Q), Ij=read(Q). The order of Ii and Ij does not matter, since the same value of
Q is read by Ti and Tj regardless of the order.

2. Ii=read(Q), Ij=write(Q).If Ii comes before Ij, then Ti does not read the value of Q

that is written by Tj in instruction Ij . If Ij comes before Ii,then Ti reads the values of Q

that is written by Tj.thus the order of Ii and Ij matters.
3. Ii=write(Q), Ij=read(Q). The order of Ii and Ij matters, reason is same as previous

case.

4. Ii=write(Q), Ij=write(Q).Since both instructions are write operations, the order of

these instructions does affect either Ti or Tj. however , the value obtained by the next
read(Q) instruction of S is affected, since the result of only the latter of the two write
instructions is preserved in the database.

Thus, only in the case where both Ii and Ij are read instructions, the order of execution
does not matter.

We say that Ii and Ij conflict if they are operations by different transactions on the same

data item and at least one of these instructions is a write operation.

Consider the following schedule1
T1 T2

Read(A)

Write(A)

Read(B)
Write(B)

Read(A)
Write(A)

Read(B)

Write(B)

Schedule 1-Showing only the read and write operations

The write(A) of T1 conflict with read(A) of T2. However, write(A) of T2 does not

conflict with read(B) of T1,hence we can swap these instructions to generate a new schedule

2 as shown in Fig. regardless of initial system state, schedule 1 and 2 generates same result.

T1 T2

Read(A)

Write(A)

Read(B)

Write(B)

Read(A)

Write(A)

Read(B)

Write(B)

Schedule 2- schedule 1 after swapping a pair of instructions

We can continue to swapping nonconflict instructions:

 Swap the read(B) instruction of T1 with read(A) instruction of T2.

 Swap the write(B) instruction of T1 with write(A) instruction of T2.

 Swap the write(B) instruction of T1 with read(A) instruction of T2.

The final result of these swaps is shown in fig, which is serial schedule.
T1 T2

Read(A)
Write(A)

Read(B)

Write(B)

Read(A)

Write(A)
Read(B)
Write(B)

Schedule 3- A serial schedule that is equivalennt to schedule 1

View serializable schedule:

Consider two schedules S and S’, where the same set of transactions participates in both

schedules. The schedules S and S’ are said to be view equivalent if three conditions are met:

1. For each data item Q, if transaction Ti reads the initial value of Q in schedule S, then

transaction Ti must, in schedule S’, also read the initial value of Q.
2. For each data item Q, if transaction Ti executes read(Q) in schedule S, and if that value was

produced by a write(Q) operation executed by transaction Tj, then the read(Q) operation of

transaction Ti must , in schedule S’, also read the value of Q that was produced by the same
write(Q) operation of transaction Tj.

3. For each data item Q, the transaction that performs the final write(Q) operation in schedule S

must performthe final write(Q) operation in schedule S’.

The concept of view equivalence leads to the concept of view serializability.

Consider the schedule 4 shown in fig. It is view equivalent to the serial schedule < Ti, Ti, Ti> since

one read(Q) instruction reads the initial value of Q and T5 performs the final write(Q).

Every conflict serializable schedule is also view serializable, but there are view serializable schedules

that are not conflict serializable.
T3 T4 T5

Read(Q)

Write(Q)

Write(Q)

Write(Q)

schedule 4- a view serializable schedule

In schedule 4, transaction T4 and T5 performs write(Q) operations without having performed a read(Q)

operation.writes of this sort are called blind writes. View serilizable schedule with blind writes is not
conflict serializable.

Testing of serializability:

Testing of serializability is done by using a directed graph, called precedence graph, constructed

from schedule. This graph consists of a pair G=(V,E), where V is a set of vertices and E is a set of

edges. The set of vertices consists of all transactions in schedule. The set of edges consists of all edges

Ti Tj for which one of three conditions hold:

 Ti executes write(Q) before Tj executes read(Q).

 Ti executes read(Q) before Tj executes write(Q)

 Ti executes write(Q) before Tj executes write(Q)

Example:
T1 T2

Read(A)
Write(A)

Read(B)
Write(B)

Read(A)

Write(A)

Read(B)

Write(B)

Schedule 1

The precedence graph for the above schedule1 is shown in fig. It contains a single edge T1 T2 ,

since all the instructions of T1 are executed before the first instruction of T2 is executed.

T1 T2

Consider following schedule 2
T1 T2

Read(A)

A:=A-50

Write(Q)

Write(A)

Read(B)
B:=B+50

Write(B)

read(A)

temp:=A*0.1

A:=A-temp
Write(A)

Write(B)

B:=B+temp

Write(B)

schedule 2

The precedence graph for schedule 2 is shown below

Precedence graph for schedule 2

Test for conflict serializability:

To test conflict serializability, construct a precedence graph for given schedule. If graph contains

cycle, the schedule is not conflict serializable. If the graph contains no cycle, then the schedule is

conflict serializable.

Schedule 1 is conflict serializable, as the precedence graph for Schedule does not contain any cycle.

While the schedule 2 is not conflict serializable, as precedence graph for it contains cycle.

Topological sorting:

If the graph is acyclic, then using topological sorting given below, find serial schedule:

 Initialize the serial schedule as empty.

 Find a transaction Ti , such that there are no arcs entering Ti , Tj is the next transaction in the
serial schedule.

 Remove Ti and all edges emitting from Ti. If the remaining set is non-empty, return to step 2,
else the serial schedule is complete.

Example:

Consider the schedule given in Fig, is the corresponding schedule conflict serializable?
T9 T10 T11

Read(A)
A:= f1(A)
Write(A)

Read(A)
A:= f2(A)
Write(A)

T1 T2

 Read(B)
B:= f3(B)
Write(B)

Read(B)

B:= f4(B)
Write(B)

concurrent schedule

Sol: precedence graph for given schedule is shown below-

As the graph is acyclic, the schedule is conflict serializable.

Example

Consider the following schedule. Is the given schedule conflict serializable?
T1 T2 T3

Read(A)

A:= f1(A)

Write(A)

Read(C)

C:= f5(C)
Write(C)

read(B)

B:= f2(B)
Write(B)

Read(A)

A:= f4(A)

Write(A)

read(C)

C:= f3(C)
Write(C)

Read(B)

B:= f6(B)
Write(B)

A concurrent schedule

Sol: the precedence graph for the given schedule is :

The graph has cycle, therefore given schedule is not conflict serializable.

Test for view serializability:

The precedence graph used for testing conflict serializability cannot be used for testing view

serializability. We need to extend the precedence graph to include labelled edges. This graph is called
as labelled precedence graph.

T9 T10 T11

T1
T2

T3

T1

o o

Tb
(a)

Tf

T1

Tb Tf

T2

Construction of labeled precedence graph:

Let S be a schedule consisting of transactions {T1 , T2 ,…… Tn }. Let Tb and Tf be two dummy

transactions such that Tb issues write(Q) for each Q accessed in S, and Tf issues read(Q) for each Q

accessed in S. we construct a new schedule S’ from S by inserting Tb at the beginning of S, and

appending Tf to the end of S. we construct the labelled precedence graph for schedule S’ as follows:

 Add an edge Ti Tj , if transaction Tj reads the value of data item Q written by transaction
Tj .

 Remove all edges incident on useless transactions. A transaction Ti is useless if there exists no

path , in the precedence graph from Ti to transaction Tf.

 For each data item Q such that Tj reads the value of Q written by Ti , and Tk executes
write(Q) and Tk ≠ Tb , do the following:

a. If Ti = Tb and Tj ≠ Tf , then insert the edge Tj Tk in the labelled precedence graph.
b. Ti ≠ Tb and Tj = Tf , then insert the edge Tk Ti in the labelled precedence graph.
c. If Ti ≠ Tb and Tj ≠ Tf , then insert the pair of edges Tk Ti and Tj Tk in the labelled

precedence graph where p is a unique integer larger than o that has not been used earlier
for labelling edges.

Example: Prepare the labelled precedence for following schedule

T1 T2

Read(Q)

Write(Q)

Write(Q)

Concurrent schedule 1

Solution: for above schedule, the graph constructed in step1 and step2 is shown below:

It contains the edge Tb T1 , since T1 reads the value of Q written by Tb . it contains the T1 Tf ,

since T1 performs the final write(Q), and Tf reads that value.

The final graph corresponding to schedule as shown below:

Recoverability:

If a transaction Ti fails, we need to undo the effect of this transaction to ensure the atomicity property
of the transaction. In a system that allows concurrent execution, it is necessary to ensure that any

transaction Tj that is dependent on Ti should also be aborted. To achieve this, we need to place
restrictions on the type of schedules permitted in the system.

Types of schedules that are acceptable from the view point of recovery from transaction failure are:

 Recoverable schedules

 Cascadeless schedules.

Recoverable schedules:

A Recoverable schedule is one where, for each pair of transactions Ti and Tj such that Tj reads a data

item previously written by Ti, the commit operation of Ti appears before the commit operations of Tj.

Consider schedule1 in fig,in which T2 is a transaction that performs only one instruction; read(A).

Suppose that system allows T2 to commit immediately after executing the read(A) instruction. Thus,

T2 commits before T1. Suppose that T1 fails before it commits. Since T2 has read the value of data

item. A written by T1, we must abort T2 to ensure transaction atomicity.

T1 T2

Read(A)

Write(A)

Read(B)

Read(A)

schedule 1

Cascadeless schedules:

Even if a schedule is recoverable, to recover correctly from the failure of a transaction Ti , we may

have to roll back several transactions. Such transactions occur if transactions have read data written

by Ti.

Consider schedule2 of fig. Transaction T1 writes a value of A that is read by transaction T2.

Transaction T2 writes a value of A that is read by T3. Suppose that, at this point, T1 fails, T1 must be

rolled back. Since T2 is dependent on T1, T2 must be rolled back. Similarly as T3 is dependent on T2. T3

should also be rolled back. This phenomenon, in which a single transaction failure leads to a series of
transaction roll backs, is called cascading rollback.

Cascading rollback is undesirable, since it leads to the undoing of a significant amount of work.

Therefore, schedules should not contain cascading rollbacks. Such schedules are called Cascadeless
schedules.

A Cascadeless schedule is one where, for each pair of transactions Ti and Tj such that Tj reads a data

item previously written by Ti , the commit operation of Ti appears before the read operation of Tj.

T1 T2 T3

Read(A)

Read(B)

Write(A)
Read(A)

Write(A)

Read(A)

Schedule 2

Implementation of isolation:

An overview of how some of most important concurrency control mechanisms work
As we know that, in order to maintain consistency in a database, it follows ACID properties. Among

these four properties (Atomicity, Consistency, Isolation and Durability) Isolation determines how

transaction integrity is visible to other users and systems. It means that a transaction should take place

in a system in such a way that it is the only transaction that is accessing the resources in a database
system.

Isolation levels defines the degree to which a transaction must be isolated from the data modifications

made by any other transaction in the database system. A transaction isolation level are defined by the
following phenomena –

 Dirty Read – A Dirty read is the situation when a transaction reads a data that has not

yet been commited.For example, Let’s say transaction 1 updates a row and leaves it

uncommited, meanwhile Transaction 2 reads the updated row. If transaction 1 rolls

back the change, transaction 2 will have read data that is considered never to have

existed.

 Non Repeatable read – Non Repeatable read occurs when a transaction reads same

row twice, and get a different value each time. For example, suppose transaction T1

reads a data. Due to concurrency, another transaction T2 updates the same data and

commit, Now if transaction T1 rereads the same data, it will retrieve a different value.

 Phantom Read – Phantom Read occurs when two same queries are executed, but the

rows retrieved by the two, are different. For example, suppose transaction T1 retrieves

a set of rows that satisfy some search criteria. Now, Transaction T2 generates some

new rows that matches the search criteria for transaction T1. If transaction T1

reexecutes the statement that reads the rows, it gets a different set of rows this time.

Based on these phenomena, The SQL standard defines four isolation levels :

1. Read Uncommitted – Read Uncommitted is the lowest isolation level. In this level,

one transaction may read not yet commited changes made by other transaction,

thereby allowing dirty reads. In this level, transactions are not isolated from each

other.

2. Read Committed – This isolation level guarantees that any data read is committed at

the moment it is read. Thus it does not allows dirty read. The transaction hold a read

or write lock on the current row, and thus prevent other rows from reading, updating

or deleting it.

3. Repeatable Read – This is the most restrictive isolation level. The transaction holds

read locks on all rows it references and write locks on all rows it inserts, updates, or

deletes. Since other transaction cannot read, update or delete these rows, consequently

it avoids non repeatable read.

4. Serializable – This is the Highest isolation level. A serializable execution is

guaranteed to be serializable. Serializable execution is defined to be an execution of

operations in which concurrently ececuting transactions appears to be serially

executing.

Implementation of isolation levels:

we provide an overview of how some of most important concurrency control mechanisms

work,

Locking Instead of locking the entire database, a transaction could, instead, lock only those

data items that it accesses. Under such a policy, the transaction must hold locks long enough

to ensure serializability, but for a period short enough not to harm performance excessively.

two-phase locking requires a transaction to have two phases, one where it acquires

locks but does not release any, and a second phase where the transaction releases locks but

does not acquire any.

Further improvements to locking result if we have two kinds of locks: shared and

exclusive. Shared locks are used for data that the transaction reads and exclusive locks are

used for those it writes

Timestamps Another category of techniques for the implementation of isolation assigns each

transaction a timestamp, typically when it begins.

For each data item, the system keeps two timestamps.

The read timestamp :of a data item holds the largest (that is, the most recent)

timestamp of those transactions that read the data item.

The write timestamp of a data item holds the timestamp of the transaction that

wrote the current value of the data item

	UNIT 1
	File Processing System Vs DBMS
	History of Database
	Characteristics of a Database Stores any kind of Data
	Support ACID Properties
	Represents complex relationship between data
	Backup and recovery
	Structures and described data
	Data integrity
	Concurrent use of database
	Abstraction levels
	Data Abstraction
	Levels of Abstraction in a DBMS

	Architecture of a Database
	Functional components of a DBMS
	Components of a Database
	DBMS Languages
	1. Data Definition Language (DDL)
	2. Data manipulation language (DML)
	3. Data Control Language (DCL)
	4. Transaction Control Language (TCL)

	Database Users
	End Users

	DBA
	1. Software installation and Maintenance
	2. Data Extraction, Transformation, and Loading
	3. Specialized Data Handling
	4. Database Backup and Recovery
	5. Security
	6. Authentication
	7. Capacity Planning
	8. Performance Monitoring
	9. Database Tuning
	10. Troubleshooting

	Entities, Attributes & Entity Sets:
	Degree of a relationship
	Diagrammatic Notation for Relationships
	Binary Relationships and Cardinality Ratio
	Participation Constraints
	Attributes for Relationship Types

	Design Issues of ER model:
	Use of Entity Sets versus Attributes

	constraints/key constraints:-
	Introduction to relational model:
	Tabular Representation of Various ER Schemas
	ER Diagram Notations
	Weak Entity Set-
	Views
	Triggers.

	Unit 3
	(Q3) Find the colors of boats reserved by Lubber.
	(Q1) Find the names of sailors who have reserved boat 103.
	Noncorrelated

	UNIT 4
	NORMALIZATION
	FUNCTIONAL DEPENDENCIES
	REASONING ABOUT FUNCTIONAL DEPENDENCIES
	Normalization:
	Denormalization:
	The need for normalization
	The Normalization Process:
	Conversion to First Normal Form (1NF) Step 1: Eliminate the Repeating Groups
	Step 2: Identify the primary key:
	Step 3: Identify All Dependencies:
	Conversion to Second Normal Form (2NF)
	Step 1: Write Each Key Component on a Separate Line
	Step 2: Assign Corresponding Dependent Attributes
	A table is in second normal form (2NF) when:
	Conversion to Third Normal (3NF):
	Step 2: Identify the Dependent Attributes
	Step 3: Remove the Dependent Attributes from Transitive Dependencies
	A table is in 3NF when:
	Dependency-Preserving Decomposition into 3NF
	Multivalued Dependencies
	Fourth Normal Form
	Join Dependencies
	Fifth Normal Form
	Transaction Concept:
	Properties of transaction:

	Transaction state:
	Concurrent executions:
	i) Improved throughput and resource utilization:
	ii) Reduced waiting time :
	T1:

	Serializability
	Need of serializability
	Time
	Time (1)
	Time (2)
	Definition: serializable Schedule
	Schedule 2- schedule 1 after swapping a pair of instructions

	Recoverability:
	Schedule 2
	Implementation of isolation levels:

